2025
[162] Pattern Recognition of Neurotransmitters: Complexity Reduction for Serotonin and Dopamine
I.M.N. Ndumgouo, E. DeVoe, S. Andreescu, and S. Schuckers
Biosensors, 15(4), 2025, 209
https://doi.org/10.3390/bios15040209
[161] Optical Fiber Mediated Biosensors for Multiplex and Onsite Food Safety Analysis: A Review
S. Hameed, I. Naz, M. Badea, N. Bano, S. Andreescu, A. Hayat, and F. Jubeen
J. Electrochem. Soc., 2025,
https://iopscience.iop.org/article/10.1149/1945-7111/ada97b
[160] A carbon fiber modified with tin oxide/graphitic carbon nitride as an electrochemical indirect competitive immuno-sensor for ultrasensitive aflatoxin M1 detection
I. Naz, M. Nashir, M.H. Nawaz, S. Andreescu, A. Hayat, and F. Jubeen
Bioelectrochemistry, 163, 2025, 108898
https://doi.org/10.1016/j.bioelechem.2025.108898
[159] Spectroelectrochemical investigation of the interaction of perfluorooctane sulfonic acid (PFOS) with organic dyes
A. Rehman, E. Locke, and S. Andreescu
Microchem. J., 209, 2025, 112683
https://doi.org/10.1016/j.microc.2025.112683
[158] A Target Responsive Metal Organic Framework Derived Bimetallic Apta-Switch for Reagentless Molecular Recognition
F. Zafar, K. Saif, D. Andreescu, S. Andreescu, and A. Hayat
Langmuir, 2025,
2024
[157] Smart and Sustainable 3D-Printed Nanocellulose-Based Sensors for Food Freshness Monitoring
O. Popoola, A. Finny, I. Dong, and S. Andreescu
ACS Appl. Mater. Interfaces, 16(44), 2024, 60920-60932
https://pubs.acs.org/doi/10.1021/acsami.4c10304
[156] Rapid Single-Step Detection of Polyfluoroalkyl Substances (PFAS) Using Electropolymerized Phenoxazine Dyes (suppl. cover page)
A. Rehman, D. Andreescu, S. Tiwari, and S. Andreescu
Anal. Chem., 96(44), 2024, 17506-17516
https://pubs.acs.org/doi/10.1021/acs.analchem.4c02480
[155] A multifunctional N-GO/PtCo nanocomposite bridged carbon fiber interface for the electrochemical aptasensing of CA15-3 oncomarker
A. Tariq, S. Bilal, I. Naz, M.H Nawaz, S. Andreescu, F. Jubeen, A. Arif, and A. Hayat
Anal. Biochem., 695, 2024, 115640
https://doi.org/10.1016/j.ab.2024.115640
[154] Real-time monitoring of cellular superoxide anion release in THP-1 cells using a catalytically amplified SOD–based microbiosensor
A.S. Deshpande, T. Bechard, E. DeVoe, J. Morse, R. Khan, K.H. Leung, and S. Andreescu
Anal. Bioanal. Chem., 416, 2024, 4727-4737
https://link.springer.com/article/10.1007/s00216-024-05437-z
[153] Sensitive Detection of Perfluoroalkyl Substances Using MXene–AgNP-Based Electrochemical Sensors (suppl. cover page)
R. Khan, Z.O. Uygun, D. Andreescu, and S. Andreescu
ACS Sens., 9(6), 2024, 3403-3412
https://doi.org/10.1021/acssensors.4c00776
[152] Atomically Precise Hexanuclear Ce(IV) Clusters as Functional Fluorescent Nanosensors for Rapid One-Step Detection of PFAS
M.H. Hassan, R. Khan, D. Andreescu, S. Shrestha, M. Cotlet and S. Andreescu
Adv. Funct. Mater., 2024, 202403364
https://doi.org/10.1002/adfm.202403364
[151] Two decades of ceria nanoparticles research: structure, properties and emerging applications
A. Othman, A. Gowda, D. Andreescu, M.H. Hassan, S.V. Babu, J. Seo, and S. Andreescu
Mater. Horiz., 11, 2024, 3213-3266
https://doi.org/10.1039/D4MH00055B
[150] Covalent organic frameworks (COFs) as carrier for improved drug delivery and biosensing applications
R. Younas, F. Jubeen, N. Bano, S. Andreescu, H. Zhang, A. Hayat
Biotechnol. Bioeng., 2024, 1-33
https://doi.org/10.1002/bit.28718
[149] Review—Catalytic Electrochemical Biosensors for Dopamine: Design, Performance, and Healthcare Applications
E. DeVoe, and S. Andreescu
ECS Sensors Plus, 3(2), 2024, 020601
https://iopscience.iop.org/article/10.1149/2754-2726/ad3950
[148] Physiological and molecular modulations to drought stress in the Brassica species
M.J. Yoo, Y. Hwang, Y.M. Koh, F. Zhu, A.S. Deshpande, T. Bechard, and S. Andreescu
Int. J. Mol. Sci., 25(6), 2024, 3306
https://doi.org/10.3390/ijms25063306
[147] A review of nanophotonic structures in optofluidic biosensors for food safety and analysis
S. Bilal, A. Tariq, S.I. Khan, M. Liaqat, S. Andreescu, H, Zhang, and A. Hayat
Trends Food Sci. Technol., 2024, 104428
https://doi.org/10.1016/j.tifs.2024.104428
[146] Sensors for emerging water contaminants: Overcoming roadblocks to innovation
M. Ateia, H. Wei, and S. Andreescu
Environ. Sci. Technol., 58(6), 2024, 2636-2651
https://doi.org/10.1021/acs.est.3c09889
[145] Catalytic MXCeO2 for enzyme based electrochemical biosensors: Fabrication, characterization and application towards a wearable sweat biosensor
R. Khan, and S. Andreescu
Biosens. Bioelectron., 248, 2024, 115975
https://doi.org/10.1016/j.bios.2023.115975
[144] Tailoring molecular recognition in predesigned multifunctional enzyme mimicking porphyrin imprinted interface for high affinity and
differential selectivity; sensing etoposide in lung cancer patients
A. Tariq, A. Arif, M. Akram, U. Latif, M.H. Nawaz, S. Andreescu, H. Zhang, and A. Hayat
Biosens. Bioelectron., 245, 2024, 115833
https://doi.org/10.1016/j.bios.2023.115833
[143] Aptamer-based electrochemical biosensor with S protein binding affinity for COVID-19 detection: Integrating computational design with
experimental validation of S Protein binding affinity
R. Khan, A.S. Deshpande, G. Proteasa, and S. Andreescu
Sens. Actuators B Chem., 399, 2024, 134775
2023
[142] Tuning the Fluorometric Sensing of Phosphate on UiO-66-NH2(Zr, Ce, Hf) Metal Nodes (cover page)
M. H. Hassan, and S. Andreescu
Inorg. Chem., 62(51), 2023, 20970–20979
https://doi.org/10.1021/acs.inorgchem.3c02318
[141] Direct real-time measurements of superoxide release from skeletal muscles in rat limbs and human blood platelets using an implantable
Cytochrome C microbiosensor
A.S. Deshpande, W. Muraoka, J. Wait, A. Çolak, and S. Andreescu
Biosens. Bioelectron., 240, 2023, 115664
https://doi.org/10.1016/j.bios.2023.115664
[140] Carbon-based electrochemical biosensors as diagnostic platforms for connected decentralized healthcare
A. Khan, E. DeVoe, and S. Andreescu
Sens. Diagn., 2023, 2, 529-558
https://doi.org/10.1039/D2SD00226D
[139] Current and emerging analytical techniques for the determination of PFAS in environmental samples
A. Rehman, M. Crimi, and S. Andreescu
Trends Environ. Anal. Chem. (TrEAC), 2023, e00198
2022
[138] Nanoelectrochemistry Reveals Selective Interactions of Perfluoroalkyl Substances (PFASs) with Silver Nanoparticles (cover page)
R. Khan, D. Andreescu, M. H. Hassan, J. Ye, and S. Andreescu
Angew. Chem., Int. Ed., 61(42), 2022, e202209164
https://doi.org/10.1002/anie.202209164
[137] 3D printable polyethyleneimine based hydrogel adsorbents for heavy metal ions removal
A.S. Finny, N. Cheng, O. Popoola, and S. Andreescu
Environ. Sci.: Adv. 1(4), 2022, 443-455
https://doi.org/10.1039/D2VA00064D
[136] Advances in electrochemical detection methods for measuring contaminants of emerging concerns
M. H. Hassan, R. Khan, and S. Andreescu
Electrochem. Sci. Adv. 2(6), 2022, e2100184
https://doi.org/10.1002/elsa.202100184
[135] Time-dependent monitoring of dopamine in the brain of live embryonic zebrafish using electrochemically pretreated carbon fiber microelectrodes
E. Dumitrescu, A. Deshpande, K. Wallace, and S. Andreescu
ACS Meas. Sci. Au 2(3), 2022, 261-270
https://doi.org/10.1021/acsmeasuresciau.1c00051
[134] Nanoceria surface: the most sensitive redox-triggered one step nano-amplifier for fluorescence signal of ochratoxin A
S. Rashid, Z. Zaman, N. Nasir, A. Ahmed, S. Andreescu, M. Liaqat, and A. Hayat
J. Nanostruct. Chem., 12, 2022, 223-233
2021
[133] Nanoparticle-based amplification for sensitive detection β-galactosidase activity in fruits
F. Mustafa, S. Liebich, and S. Andreescu
Anal. Chem. Acta, 1186, 2021, 339129
https://doi.org/10.1016/j.aca.2021.339129
[132] A 3D-Printed Breath Analyzer Incorporating CeO2 Nanoparticles for Colorimetric Enzyme-Based Ethanol Sensing
F. Mustafa, M. Carhart, and S. Andreescu
ACS Appl. Nano Mater., 4(9), 2021, 9361–9369
https://doi.org/10.1021/acsanm.1c01826
[131] 3D-Printable Nanocellulose-Based Functional Materials: Fundamentals and Applications
A.S. Finny, O. Popoola, and S. Andreescu
Nanomaterials, 11(9), 2021, 2358
https://doi.org/10.3390/nano11092358
[130] Advances in electrochemical detection for probing protein aggregation
S. Andreescu, and A. Vasilescu
Curr. Opin. Electrochem., 30, 2021, 100820
https://doi.org/10.1016/j.coelec.2021.100820
[129] Morphology controlled NiO nanostructures as fluorescent quenchers for highly sensitive aptamer-based FRET detection of ochratoxin A
A. Khan, M.A.H. Nawaz, N. Akhtar, R. Raza, C. Yu, S. Andreescu, and A. Hayat
Appl. Surf. Sci., 566, 2021, 150647
https://doi.org/10.1016/j.apsusc.2021.150647
[128] Electrochemical Sensors for Oxidative Stress Monitoring
A.S. Deshpande, W. Muraoka, and S. Andreescu
Curr. Opin. Electrochem., x, 2021, 100809
https://doi.org/10.1016/j.coelec.2021.100809
[127] Ceria Nanoparticles Theranostics: Harnessing Antioxidant Properties in Biomedicine and Beyond
S. Banavar, A. Deshpande, S. Sur, and S. Andreescu
J. Phys. Mater., 4(4), 2021, 042003
https://iopscience.iop.org/article/10.1088/2515-7639/ac0594/meta
[126] Cerium Oxide-based Hypoxanthine Biosensor for Fish Spoilage Monitoring
F. Mustafa, A. Othman, and S. Andreescu
Sens. Actuators B Chem., 332, 2021, 129435
https://doi.org/10.1016/j.snb.2021.129435
[125] Highly sensitive mercury detection using electroactive gold-decorated polymer nanofibers
F.H. Narouei, L. Livernois, D. Andreescu, and S. Andreescu
Sens. Actuators B Chem., 329, 2021, 129267
https://doi.org/10.1016/j.snb.2020.129267
[124] Two-dimensional Nanostructures for Electrochemical Biosensor
R. Khan, A. Radoi, S. Rashid, A. Hayat, A. Vasilescu, and S. Andreescu
Sensors, 21(10), 2021, 3369
https://doi.org/10.3390/s21103369
[123] Collision-Based Electrochemical Detection of Lysozyme Aggregation
K.A. Kirk, A. Vasilescu, D. Andreescu, D. Senarathna, S. Mondal, and S. Andreescu
Anal. Chem., 93(4), 2021, 2026-2037
https://doi.org/10.1021/acs.analchem.0c03578
[122] Addressing the Selectivity of Enzyme Biosensors: Solutions and Perspective
B. Bucur, C. Purcarea, S. Andreescu, and A. Vasilescu
Sensors, 21(9), 2021, 3038
https://doi.org/10.3390/s21093038
[121] Microbial Electrochemical Systems: Principles, Construction and Biosensing Applications
R.Y.A. Hassan, F. Febbraio, and S. Andreescu
Sensors, 21(4), 2021, 1279
https://dx.doi.org/10.3390%2Fs21041279
[120] Electrochemical Quantification of Lead Adsorption on TiO2 Nanoparticles
F.H. Narouei, K.A. Kirk, and S. Andreescu
Electroanalysis, 33(1), 2021, 188-196
2020
[119] Paper-Based Enzyme Biosensor for One-Step Detection of Hypoxanthine in Fresh and Degraded Fish
F. Mustafa, and S. Andreescu
ACS Sens., 5(12), 2020, 4092-4100
https://doi.org/10.1021/acssensors.0c02350
[118] Ultrafast Removal of Phosphate from Eutrophic Waters Using a Cerium-Based Metal–Organic Framework
M.H. Hassan, R. Stanton, J. Secora, D.J. Trivedi and S. Andreescu
ACS Appl. Mater. Interfaces, 12(47), 2020, 52788-52796
https://doi.org/10.1021/acsami.0c16477
[117] Cerium Oxide Nanoparticles Stabilized within Metal−Organic Frameworks for the Degradation of Nerve Agents
M.H. Hassan, D. Andreescu, and S. Andreescu
ACS Appl. Nano Mater., 3, 2020, 3288-3294
https://doi.org/10.1021/acsanm.0c00015
[116] 3D Printed Hydrogel-based Sensors for Quantifying UV Exposure
A.S. Finny, C. Jiang, and S. Andreescu
ACS Appl. Mater. Interfaces, 12(39), 2020, 43911-43920
https://doi.org/10.1021/acsami.0c12086
[115] Easy to use and inexpensive sensors for assessing the quality and traceability of cosmetic antioxdiants
A. Othman, L. Norton, A.S. Finny, and S. Andreescu
Talanta, 208, 2020, 120473
https://doi.org/10.1016/j.talanta.2019.120473
[114] MXenes-Based Bioanalytical Sensors: Design, Characterization, and Applications
R. Khan, and S. Andreescu
Sensors, 20(18), 2020, 5434
https://doi.org/10.3390/s20185434
[113] Rapid Characterization of arsenic adsorption on single magnetic nanoparticles by collisions at microelectrodes
F.H. Narouei, D. Andreescu and S. Andreescu
Environ. Sci. Nano, 7, 2020, 1999-2009
https://doi.org/10.1039/D0EN00336K
[112] Nanotechnology-based approaches for food sensing and packaging applications
F. Mustafa, and S. Andreescu
RSC Adv., 33(10), 2020, 19309-19336
2019
[111] Magnetic particles-based analytical platforms for food safety monitoring
R. Khan, A. Rehman, A. Hayat, and S. Andreescu
Magnetochemistry, 5(4), 2019, 63
https://doi.org/10.3390/magnetochemistry5040063
[110] Recyclable adsorbents based on ceria nanostructures on mesoporous silica beads for the removal and recovery of phosphate from eutrophic waters
A. Othman, P. Vargo, and S. Andreescu
ACS Appl. Nano Mater., 2(1), 2019, 7008-7018
https://doi.org/10.1021/acsanm.9b01512
[109] Easy-to-Use Sensors for filed monitoring of copper contamination in water and pesticide-sprayed plants
K.A. Kirk, and S. Andreescu
Anal. Chem., 91(21), 2019, 13892-13899
https://doi.org/10.1021/acs.analchem.9b03385
[108] Online monitoring of biofilm formation using nanostructured electrode surfaces
M. Sedki, R.Y.A. Hassan, S. Andreescu, and I.M. El-Sherbiny
Mater, Sci. Eng. C, 100, 2019, 178-185
https://doi.org/10.1016/j.msec.2019.02.112
[107] Single-particle investigation of environmental redox processes of arsenic on cerium oxide nanoparticles by collision electrochemistry
A. Karimi, D. Andreescu, and S. Andreescu
ACS Appl. Mater. Interfaces, 1(10), 2019, 5722-5735
https://doi.org/10.1021/acsami.9b05234
[106] Differential lethal and sublethal effects in embryionic zebrafish exposed to different sizes of silver nanoparticles
X. Liu, E. Dumitrescu, A. Kumar, D. Austin, D.V. Goia, K.N. Wallace, and S. Andreescu
Environ Pollut., 248, 2019, 627-634
2018
[105] Chemical and Biological Sensors for Food-Quality Monitoring and Smart Packaging
F. Mustafa, and S. Andreescu
Foods, 7(10), 2018, 168
https://doi.org/10.3390/foods7100168
[104] Eu-doped Ceria as a Nanoenzyme Fluorescent Probe for Biosensing
A. Othman, A. Hayat, and S. Andreescu
ACS Appl. Nano Mater., 1(10), 2018, 5722-5735
https://doi.org/10.1021/acsanm.8b01345
[103] Electroanalytical aspects of single-entity collision methods for bioanalytical and environmental applications
D. Andreescu, K.A. Kirk, F.H. Narouei, and S. Andreescu
ChemElectroChem., 5, 2018, 2920-2936
https://doi.org/10.1002/celc.201800722
[102] Nanoporous sorbents for the removal and recovery of Phosphorous from Eutrophic waters : sustainability challenges and solutions
A. Othman, E. Dumitrescu, D. Andreescu, and S. Andreescu
ACS Sustain. Chem. Eng., 6(10), 2018, 12542-12561
https://doi.org/10.1021/acssuschemeng.8b01809
[101] DNA assay based on nanoceria as fluorescence quenchers (NanoCeracQ DNA assay)
G. Bulbul, A. Hayat, F. Mustafa, and S. Andreescu
Sci. Rep., 8(1), 2018, 2426
https://doi.org/10.1038/s41598-018-20659-9
[100] Real Time Electrochemical Investigation of the Release, Distribution and Modulation of Nitric Oxide in the Intestine of Individual Zebrafish Embryos
E. Dumitrescu, K.N. Wallace, and S. Andreescu
Nitric Oxide, 74, 2018, 32-38
https://doi.org/10.1016/j.niox.2018.01.002
[99] Interaction, transformation and toxicity assessment of particles and additives used in the semiconducting industry
E. Dumitrescu, D.P. Karunaratne, S.V. Babu, K.N. Wallace, and S. Andreescu
Chemosphere, 192, 2018, 178-185
https://doi.org/10.1016/j.chemosphere.2017.10.138
[98] Nanomaterial-functionalized cellulose: design, characterization and analytical applications
K.A. Kirk, A. Othman, and S. Andreescu
Anal. Sci., 34, 2018, 19-31
2017
[97] Multifunctional Nanotechnology-Enabled Approaches for Rapid Capture and Detection of Pathogens
F. Mustafa, R.Y.A. Hassan, and S. Andreescu
Sensors, 17(9), 2017, 2121
https://doi.org/10.3390/s17092121
[96] Electrochemical Investigation of pH-Dependent Activity of Polyethyleneimine-Capped Silver Nanoparticles
A. Karimi, K.A. Kirk, and S. Andreescu (cover feature)
ChemElectroChem, 4(11), 2017, 2801-2806
https://doi.org/10.1002/celc.201700460
[95] CeO2-Assisted Biocatalytic Nanostructures for Laccase-Based Biocathodes and Biofuel Cells
A. Karimi, and S. Andreescu
J. Electrochem. Soc., 164(9), 2017, G92-G98
https://doi.org/10.1149/2.0931709jes
[94] Developmental toxicity of glycine-coated silica nanoparticles in embryonic zebrafish
E. Dumitrescu, D.P. Karunaratne, M.K. Prochaska, X. Liu, K.N. Wallace, and S. Andreescu
Environ. Pollut., 229, 2017, 439-447
https://doi.org/10.1016/j.envpol.2017.06.016
[93] Lethality of MalE-LacZ hybrid protein shares mechanistic attributes with oxidative component of antibiotic lethality
N. Takahashi, C.C. Gruber, J.H. Yang, X. Liu, D. Braff, C.N. Yashaswini, S. Bhubhanil, Y. Furuta, S. Andreescu, J.J. Collins and G.C. Walker
PNAS, 114(34), 2017, 9164-9169
https://doi.org/10.1073/pnas.1707466114
[92] Europium-Doped Cerium Oxide Nanoparticles Limit Reactive Oxygen Species Formation and Ameliorate Intestinal Ischemia-reperfusion Injury
E.O. Gubernatorova, X. Liu, A. Othman, W.T. Muraoka, E.P. Koroleva, A. Tumanov, and S. Andreescu
Adv. Healthc. Mater., 6(14), 2017, 1700176
https://doi.org/10.1002/adhm.201700176
[91] Biomolecular detection at ssDNA-conjugated nanoparticles by nano-impact electrochemistry
A. Karimi, A. Hayat, and S. Andreescu
Biosens. Bioelectron., 87, 2017, 501-507
https://doi.org/10.1016/j.bios.2016.08.108
[90] Functionalized Paper-based Platform for Rapid Capture and Detection of CeO2 nanoparticles
A. Othman, D. Andreescu, D.P. Karunaratne, S.V. Babu, and S. Andreescu
ACS Appl. Mater. Interfaces, 9(14), 2017, 12893-12905
2016
[89] Functional nanostructures for enzyme based biosensors: Properties, fabrication and applications
A. Othman, A. Karimi, and S. Andreescu
J. Mater. Chem. B, 4, 2016, 7178-7203
https://doi.org/10.1039/C6TB02009G
[88] Reactivity of nanoceria particles exposed to biologically relevant catechol-containing molecules
G. Bulbul, A. Hayat, X. Liu, and S. Andreescu
RSC Adv., 6, 2016, 60007-60014
https://doi.org/10.1039/C6RA07279H
[87] Real-time investigation of antibiotics-induced oxidative stress and superoxide release in bacteria using an electrochemical biosensor
X. Liu, M. Marrakchi, M. Jahne, S. Rogers, and S. Andreescu
Free Radic. Biol. Med., 91, 2016, 25-33
https://doi.org/10.1016/j.freeradbiomed.2015.12.001
[86] Biosensors based on modularly designed synthetic peptides for recognition, detection and live/dead differentiation of pathogenic bacteria
X. Liu, M. Marrakchi, D. Xu, H. Dong, and S. Andreescu
Biosens. Bioelectron., 80, 2016, 9-16
https://doi.org/10.1016/j.bios.2016.01.041
[85] ssDNA-functionalized nanoceria : A universal redox active aptaswitch for biomolecular recognition
G. Bulbul, A. Hayat, and S. Andreescu
Adv. Healthc. Mater., 5(7), 2016, 822-828, (cover page)
https://doi.org/10.1002/adhm.201500705
[84] A single use electrochemical sensor based on biomimetic nanoceria for the detection of wine antioxidants
V. Andrei, E. Sharpe, A. Vasilescu and S. Andreescu
Talanta, 156-157, 2016, 112-118
https://doi.org/10.1016/j.talanta.2016.04.067
[83] An acetylcholinesterase (AChE) biosensor with enhanced solvent resistance based on chitosan for detection of pesticides
J. Warner, and S. Andreescu
Talanta, 146, 2016, 279-284
https://doi.org/10.1016/j.talanta.2015.08.030
[82] Effects of brewing conditions on the antioxidant capacity of twenty-four commercial green tea varieties
E. Sharpe, F. Hua, S. Schukers, S. Andreescu, and R. Bradley
Food Chem., 192, 2016, 380-387
2015
[81] Portable Nanoparticle-Based Sensors for Food Safety Assessment
G. Bulbul, A. Hayat, and S. Andreescu
Sensors, 15, 2015, 30736-30758
https://doi.org/10.3390/s151229826
[80] A generic amplification strategy for electrochemical aptasensors using a non-enzymatic nanoceria tag
G. Bulbul, A. Hayat, and S. Andreescu
Nanoscale, 7, 2015, 13230-13238
https://doi.org/10.1039/C5NR02628H
[79] Portable Colorimetric Paper-Based Biosensing Device for the Assessment of Bisphenol A in Indoor Dust
R.S.J. Alkasir, A. Rossner, and S. Andreescu
Environ. Sci. Technol., 49(16), 2015, 9889-9897
https://doi.org/10.1021/acs.est.5b01588
[78] Evaluation of the oxidase like activity of nanoceria and its application in colorimetric assays
A. Hayat, J. Cunningham, G. Bulbul, and S. Andreescu
Anal. Chim. Acta, 885, 2015, 140-147
https://doi.org/10.1016/j.aca.2015.04.052
[77] Platinum-doped ceria based biosensor for in vitro and in vivo monitoring of lactate during hypoxia
N.P. Sardesai, M. Ganesana, A. Karimi, J.C. Leiter, and S. Andreescu
Anal. Chem., 87(5), 2015, 2996-3003
https://doi.org/10.1021/ac5047455
[76] Graphene based enzymatic bioelectrodes and biofuel cells
A. Karimi, A. Othman, A. Uzunoglu, L.A. Stanciu, and S. Andreescu
Nanoscale, 7, 2015, 6909-6923
https://doi.org/10.1039/C4NR07586B
[75] CeO2 –MO x (M: Zr, Ti, Cu) mixed metal oxides with enhanced oxygen storage capacity
A. Uzunoglu, H. Zang, S. Andreescu and L.A. Stanciu
J. Mater. Sci., 15(10), 2015, 3750-3762
https://doi.org/10.1007/s10853-015-8939-7
[74] Integration of Nanoparticle Based Paper Sensors into the Classroom: an Example of Application for Rapid Colorimetric Analysis of Antioxidants
E. Sharpe, and S. Andreescu
J. Chem. Educ., 92, 2015, 886-891
2014
[73] Engineered Pt doped nanoceria for oxidase based bioelectrodes operating in oxygen deficient environment
N.P. Sardesai, A. Karimi, and S. Andreescu
ChemElectroChem, 1(12), 2014, 2082-2088
https://doi.org/10.1002/celc.201402250
[72] Recent Developments in Electrochemical Sensors for the Detection of Neurotransmitters for Applications in Biomedicine
E.R. Ozel, A. Hayat, and S. Andreescu
Anal. Lett., 48(7), 2014, 1044-1069
https://doi.org/10.1080/00032719.2014.976867
[71] Applications and Implications of Nanoceria Reactivity: Measurement Tools and Environmental Impact
D. Andreescu, G. Bulbul, E.R. Ozel, A. Hayat, N.P. Sardesai, and S. Andreescu
Environ. Sci. Nano, 1, 2014, 445-458
https://doi.org/10.1039/C4EN00075G
[70] Electrochemical methods for nanotoxicity assessment
E.R. Ozel, X. Liu, R.S.J. Alkasir, and S. Andreescu
Trends Anal. Chem., 59, 2014, 112-120
https://doi.org/10.1016/j.trac.2014.04.006
[69] Probing phosphatase activity using redox active nanoparticles: A novel colorimetric approach for the detection of enzyme activity
A. Hayat, G. Bulbul, and S. Andreescu
Biosens. Bioelectron., 56, 2014, 334-339
https://doi.org/10.1016/j.bios.2014.01.003
[68] Redox reactivity of cerium oxide nanoparticles against dopamine
A. Hayat, D. Andreescu, G. Bulbul, and S. Andreescu
J. Colloid Interface Sci., 418, 2014, 240-245
https://doi.org/10.1016/j.jcis.2013.12.007
[67] Metal oxide based multisensor array and portable database for field analysis of antioxidants
E. Sharpe, B. Bradley, T. Fresco, D. Jayathilaka, A. Marsh, and S. Andreescu
Sens. Actuators B Chem., 193, 2014, 552-562
https://doi.org/10.1016/j.snb.2013.11.08
[66] Glutamate oxidase biosensor based on mixed ceria and titania nanoparticles for the detection of glutamate in hypoxic environments
E.R. Ozel, C.R. Ispas, M. Ganesana, J.C. Leiter, and S. Andreescu
Biosens. Bioelectron., 52, 2014, 2240-2249
https://doi.org/10.1016/j.bios.2013.08.054
[65] Alterations of intestinal serotonin following nanoparticle exposure in embryonic zebrafish
E.R. Ozel, K.N. Wallace, and S. Andreescu
Environ. Sci. Nano, 1, 2014, 27-36
2013
[64] Electroanalytical evaluation of antioxidant activity of cerium oxide nanoparticles by nanoparticle collisions at microelectrodes
N.P. Sardesai, D. Andreescu, and S. Andreescu
J. Am. Chem. Soc., 135(45), 2013, 16770-16773
https://doi.org/10.1021/ja408087s
[63] Nanoceria Particles As Catalytic Amplifiers for Alkaline Phosphatase Assays
A. Hayat, and S. Andreescu
Anal. Chem., 85(21), 2013, 10028-10032
https://doi.org/10.1021/ac4020963
[62] Effect of cerium oxide nanoparticles on intestinal serotonin in zebrafish
R.E. Ozel, A. Hayat, K.N. Wallace, and S. Andreescu
RSC Adv., 3, 2013, 15298-15309
https://doi.org/10.1039/C3RA41739E
[61] Comparative Evaluation of Intestinal Nitric Oxide in Embryonic Zebrafish Exposed to Metal Oxide Nanoparticles
R.E. Ozel, R.S.J. Alkasir, K. Ray, K.N. Wallace, and S. Andreescu
Small, 9(24), 2013, 4250-4261
https://doi.org/10.1002/smll.201301087
[60] Design of PEG-aptamer two piece macromolecules as convenient and integrated sensing platform: Application to the label free detection of small size molecules
A. Hayat, S. Andreescu, and J.-L. Marty
Biosens. Bioelectron., 45, 2013, 168-173
https://doi.org/10.1016/j.bios.2013.01.059
[59] A conceptual framework for the development of a course in nano/micro-scale systems engineering
C. Cetinkaya, I.I. Suni, S. Andreescu, M.B. Esch, W. Cui, D.J. Jones, S. Jones, G.S. Chojecki, J.D. Stephens, and A.S.Vahdat
J. Nano Educ., 5, 2013, 1-9
https://doi.org/10.1166/jne.2013.1054
[58] Loss of ascl1a prevents secretory cell differentiation within the zebrafish intestinal epithelium resulting in a loss of posterior intestinal motility
G. Roach, R.H. Wallace, A. Cameron, R.E. Ozel, C.F. Hongay, R. Baral, S. Andreescu, and K.N. Wallace
Dev. Biol., 376(2), 2013, 171-186
https://doi.org/10.1016/j.ydbio.2013.01.013
[57] Portable nanoparticle based technology for rapid detection of food antioxidants (NanoCerac)
E. Sharpe, T. Fresco, D. Andreescu, and S. Andreescu
Analyst, 138(1), 2013, 249-262
2012
[56] Colorimetric paper bioassay for the detection of phenolic compounds
R.S.J. Alkasir, M. Ornatska, and S. Andreescu
Anal. Chem., 84, 2012, 9729-9737
https://doi.org/10.1021/ac301110d
[55] Real-time monitoring of superoxide accumulation and antioxidant activity in a brain slice model using an electrochemical cytochrome c biosensor
M. Ganesana, J.S. Erlichman, and S. Andreescu
Free Radic. Biol. Med., 53, 2012, 2240-2249
https://doi.org/10.1016/j.freeradbiomed.2012.10.540
[54] Review: Recent developments in enzyme-based biosensors for biomedical applications
C.R. Ispas, G. Crivat, and S. Andreescu
Anal. Lett., 45, 2012, 168-186, (Invited)
https://doi.org/10.1080/00032719.2011.633188
[53] Nanoparticle based technologies for the detection of food antioxidants
A. Vasilescu, E. Sharpe, and S. Andreescu
Curr. Anal. Chem., 8(4), 2012, 495-505
2011
[52] Site-specific immobilization of a (His)6-tagged acetylcholinesterase on nickel nanoparticles for highly sensitive toxicity biosensors
M. Ganesana, G. Istambouille, J.-L. Marty, T. Noguer, and S. Andreescu
Biosens. Bioelectron., 30, 2011, 43-48
https://doi.org/10.1016/j.bios.2011.08.024
[51] Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia
A.Y. Estevez, S. Pritchard, K. Harper, J.W. Aston, A. Lynch, J.J. Lucky, J.S. Ludington, P. Chantani, W. Mosenthal, J.C. Leiter, S. Andreescu, J.S. Erlichman
Free Radic. Biol. Med., 51, 2011, 1155-1163
https://doi.org/10.1016/j.freeradbiomed.2011.06.006
[50] Ceria nanoparticles as colorimetric probes in paper-based bioassays
M. Ornatska, E. Sharpe, D. Andreescu, and S. Andreescu
Anal. Chem., 83(11), 2011, 4273-4280
https://doi.org/10.1021/ac200697y
[49] Chitosan functionalized carbon fiber microelectrodes for real-time in vivo detection of neurotransmitters in live embryonic zebrafish
E.R. Ozel, K.N. Wallace, and S. Andreescu
Anal. Chim. Acta, 695(1-2), 2011, 89-95
https://doi.org/10.1016/j.aca.2011.03.057
[48] Adsorption of Arsenic by Iron Oxide Nanoparticles: A Versatile, Inquiry Based Laboratory for Undergraduate Science Course
D. VanDorn, M.T. Ravalli, M.M. Small, B. Hillery, and S. Andreescu
J. Chem. Educ., 88(8), 2011, 1119-1122
2010
[47] Enzyme functionalized nanoparticles for electrochemical biosensors: A comparative study with applications for the detection of bisphenol A
R.S.J. Alkasir, M. Ganesana, Y.-H. Won, L. Stanciu, and S. Andreescu
Biosens, Bioelectron., 26, 2010, 43-49
https://doi.org/10.1016/j.bios.2010.05.001
[46] Development of a xanthine oxidase modified amperometric electrode for the determination of superoxide radicals
M. Cortina-Puig, A.C.H. Scangas, Z.S. Marchese, S. Andreescu, J.L.Marty, and C. Calas-Blanchard
Electroanalysis., 22(20), 2010, 2429-2433
https://doi.org/10.1002/elan.201000248
[45] Electrochemical quantification of serotonin in the live embryonic zebrafish intestine
J. Njagi, M. Ball, K.N. Wallace and S. Andreescu
Anal. Chem., 82(5), 2010, 1822-1830
https://doi.org/10.1021/ac902465v
[44] Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor
J. Njagi, M.M. Chernov, J.C. Leiter and S. Andreescu
Anal. Chem., 82(3), 2010, 989-996
https://doi.org/10.1021/ac9022605
[43] Biomagnetic capsules for easy removal of phenol and bisphenol A
C.R. Ispas, M.T. Ravalli, A. Steere, and S. Andreescu
Water Res., 44, 2010, 1961-1969
https://doi.org/10.1016/j.watres.2009.11.049
[42] AChE Biosensor based on zinc oxide sol-gel for the detection of pesticides
R. Sinha, M. Ganesana, S. Andreescu and L. Stanciu
Anal. Chim. Acta, 661(2), 2010, 195-199
https://doi.org/10.1016/j.aca.2009.12.020
[41] Biomagnetic glasses: preparation, characterization and biosensor applications
Y.-H. Won, H.S. Jang, S.M. Kim, M. Ganesana, E. Stach, S. Andreescu and L.A. Stanciu
Langmuir, 26(6), 2010, 4320-4326
https://doi.org/10.1021/la903422q
[40] A sensitive electrochemical sensor based on chitosan and electropolymerized Meldola blue for monitoring NO in brain slices
J. Njagi, J.S. Erlichman, J.W. Aston, J.C. Leiter, and S. Andreescu
Sens. Actuators B Chem., 143(2), 2010, 673-680
2009
[39] Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish
C. Ispas, D. Andreescu, A. Patel, D.V. Goia, K. Wallace and S. Andreescu
Environ. Sci. Technol., 43(16), 2009, 6349-6356
https://doi.org/10.1021/es9010543
[38] Enzyme functionalized mesoporous silica for bioanalytical applications
C. Ispas, I. Sokolov, and S. Andreescu
Anal. Bioanal. Chem., 393(2), 2009, 543-554
https://doi.org/10.1007/s00216-008-2250-2
[37] Applications of advanced nanomaterials for environmental monitoring
S. Andreescu, J. Njagi, C. Ispas, and M. Ravalli
J. Environ. Monit., 11, 2009, 27-40. (Critical review)
https://doi.org/10.1039/B811063H
(JEM Spotlight article, Top 10 most accessed articles in 2009 and 2010)
[36] Magnetic Particles-Based Hybrid Platforms for Bioanalytical Sensors
L. Stanciu, Y.-H. Won, M. Ganesana, and S. Andreescu
Sensors, 9(4), 2009, 2976-2999
2008
[35] Mixed Ceria Based Metal Oxides Biosensor for Operation in Oxygen Restrictive Environments
J. Njagi, C. Ispas, and S. Andreescu
Anal. Chem., 80(19), 2008, 7266-7274
https://doi.org/10.1021/ac800808a
[34] Electrochemical Studies of ceria as electrode material for sensing and biosensing applications
C. Ispas, J. Njagi, and S. Andreescu
J. Electrochem. Soc., 155(8), 2008, F169-F176
https://doi.org/10.1149/1.2936178
[33] Studies of the binding and signaling of surface-immobilized periplasmic glucose receptors on gold nanoparticles: A glucose biosensor application
S. Andreescu, and L.A. Luck
Anal. Biochem., 375, 2008, 282-290
2007
[32] Stable enzyme biosensors based on chemically synthesized Au-polypyrrole nanocomposite
J. Njagi, and S. Andreescu
Biosens. Bioelectron., 23(2), 2007, 768-775
https://doi.org/10.1016/j.bios.2007.03.028
[31] Highly sensitive detection of organophosphorus insecticides using magnetic microbeads and genetically engineered acetylcholinesterase
G. Istamboulie, S. Andreescu, J.-L. Marty and T. Noguer
Biosens. Bioelectron., 23(4), 2007, 506-512
https://doi.org/10.1016/j.bios.2007.06.022
[30] Integration of Nanomaterials into the Undergraduate Chemistry Curriculum: Synthesis and Characterization of Gold Nanoparticles
D.V. Goia, D. Andreescu, and S. Andreescu
The Chemical Educator, 12(4), 2007, 263-266
chemeducator.org/bibs/0012004/12070263sa.htm
[29] Existence and Reactivity of Three Forms of Orthophthalaldehyde in Aqueous Solutions. Polarographic, Voltammetic and Spectrophotometric Study
N. Salem, S. Andreescu, E. Kulla and P. Zuman
J. Phys. Chem. A, 111, 2007, 4658-4670
https://doi.org/10.1021/jp071151s
[28] A Bioanalytical Chemistry Experiment for Undergraduate Students: Biosensors Based on Metal Nanoparticles
J. Njagi, J. Warner, and S. Andreescu
J. Chem. Educ., 84(7), 2007, 1180-1182
https://doi.org/10.1021/ed084p1180
[27] Effect of benzotriazole derivatives on corrosion of steel in simulated concrete pore solutions
M. Sheban, M. Abu-Dalo, A. Ayman, and S. Andreescu
Anti-corrosion Methods and Materials, 54(3), 2007, 135-147
https://doi.org/10.1108/00035590710748605
(2008 Outstanding paper Award by Emerald Literati Network)
[26] Detection and identification of bacteria using antibiotic susceptibility and a multi-array electrochemical sensor with pattern recognition
J. Karasinski, L. White, E. Wang, Y. Zhang, S. Andreescu, O.A. Sadik, B. Lavine, and M.N. Vora
Biosens. Bioelectron., 22, 2007, 2643-2649
2006
[25] Twenty years research in cholinesterase biosensors: From basic research to practical applications
S. Andreescu, and J.-L. Marty
Biomol. Eng., 23(1), 2006, 1-15, (Invited review)
https://doi.org/10.1016/j.bioeng.2006.01.001
[24] Trends in Flow-Based Biosensing Systems for Pesticide Assessment
B. Prieto-Simón, M. Campas, S. Andreescu, and J.-L. Marty
Sensors, 6(10), 2006, 1161-1186
https://doi.org/10.3390/s6101161
[23] Enzymatic biosensors for screening carbamate insecticides: application to environmental and food monitoring
B. Bucur, M. Campas, B. Prieto-Simón, S. Andreescu, and J.-L. Marty
Chemia i Inżynieria Ekologiczna, 13(5), 2006, 339-348 (Ecological Chemistry and Engineering)
www.infona.pl/resource/bwmeta1.element.baztech-article-BPG4-0014-0001
2005
[22] Advanced electrochemical sensors for cell cancer monitoring
S. Andreescu, and O.A. Sadik
Methods, 37, 2005, 84-93
https://doi.org/10.1016/j.ymeth.2005.05.007
[21] Multiarray Sensors with Pattern Recognition for the Detection, Classification and Differentiation of Bacteria at Species and Subspecies Levels
J. Karasinski, S. Andreescu, O.A. Sadik, B. Lavine, and M.N. Vora
Anal. Chem., 77(24), 2005, 9741-7949
https://doi.org/10.1021/ac0512150
[20] Effect of natural and synthetic estrogens on A549 lung cancer cells: Correlation of cytotoxic effects to chemical structures
S. Andreescu, O.A. Sadik, and D.W. McGee
Chem. Res. Toxicol. 18, 2005, 446-474
2004
[19] Application of oriented immobilisation methods to enzyme sensors. (A review)
M. Campas, B. Bucur, S. Andreescu, and J.-L. Marty
Current Topics in Biotechnology, 1, 2004, 95-107
www.researchtrends.net/tia/abstract.asp?in=0&vn=1&tid=48&aid=1826&pub=2004&type=3
[18] Autonomous multielectrode system for monitoring the interactions of isoflavonoids with lung cancer cells
S. Andreescu, O.A. Sadik, D.W. McGee and S. Suye
Anal. Chem., 76, 2004, 2321-2330
https://doi.org/10.1021/ac035436m
[17] The correlation of analyte structures with biosensor responses using structure-activity relationship: Detection of phenolic estrogens as model
S. Andreescu, and O.A. Sadik
Anal. Chem. 76, 2004, 552-560
https://doi.org/10.1021/ac034480z
[16] Advances in Analytical Technologies for Environmental Protection and Public Safety. (Critical review)
O.A. Sadik, A.K. Wanekaya, and S. Andreescu
J. Environ. Monit., 6, 2004, 413-522
https://doi.org/10.1039/B401794N
[15] Trends & Challenges in Biochemical Sensors for Clinical and Environmental Monitoring. (A review)
S. Andreescu, and O.A. Sadik
Pure Appl. Chem. 76(4), 2004, 861-878
https://doi.org/10.1351/pac200476040861
[14] Affinity methods to immobilize acetylcholinesterases for manufacturing biosensors
B. Bucur, S. Andreescu, and J.-L. Marty
Anal. Lett., 37(8), 2004, 1571-1588
https://doi.org/10.1081/AL-120037588
[13] Comparative investigation between acetylcholinesterase obtained from commercial sources and genetically modified Drosophila melanogaster. Application in amperometric biosensors for methamidophos pesticide detection
P.R.B.O. Marques, G.S. Nunes, S. Andreescu, and J.-L. Marty
Biosens. Bioelectron., 20, 2004, 824-831
2003
[12] A new electrocatalytic mechanism for the oxidation of phenols at platinum electrodes
S. Andreescu, D. Andreescu, and O.A. Sadik
Electrochem. Commun., 5(8), 2003, 681-688
https://doi.org/10.1016/S1388-2481(03)00166-8
[11] Development of highly sensitive sensor based on bio-engineered acetylcholinesterase immobilized by affinity method
S. Andreescu, D. Fournier, and J.-L. Marty
Anal. Lett., 39(9), 2003, 1865-1885
https://doi.org/10.1081/AL-120023619
[10] Screen-printed sensors with electropolymerised Meldola Blue as versatile detectors in biosensors
A. Vasilescu, S. Andreescu, C. Bala, S.C. Litescu, T. Noguer, and J.-L. Marty
Biosens. Bioelectron., 18, 2003, 781-790
https://doi.org/10.1016/S0956-5663(03)00044-7
[9] Strategies for developing NADH detectors based on meldola blue and screen-printed electrodes: a comparative study
A. Vasilescu, T. Noguer, S. Andreescu, C. Calas-Blanchard, C. Bala and J.-L. Marty
Talanta, 59, 2003, 751-756
https://doi.org/10.1016/S0039-9140(02)00614-8
[8] Adsorption: an easy and efficient immobilisation of acetylcholinesterase on screen-printed electrodes
C. Bonnet, S. Andreescu, and J.-L. Marty
Anal. Chim. Acta, 481, 2003, 209-211
2002
[7] Immobilisation of AChE on screen-printed electrodes; Comparative study between three immobilisation methods; Applications to the detection of
organophosphorus insecticides
S. Andreescu, L. Barthelmebs, and J.-L. Marty
Anal. Chim. Acta, 464, 2002, 171-180
https://doi.org/10.1016/S0003-2670(02)00518-4
[6] Screen-printed electrode based on AChE for the detection of pesticides in presence of organic solvents
S. Andreescu, T. Noguer, V. Magearu, and J.-L. Marty
Talanta, 57, 2002, 169-176
https://doi.org/10.1016/S0039-9140(02)00017-6
[5] Detection of organophosphorus insecticides with immobilized acetylcholinesterase: Comparative study between two enzyme sensors
S. Andreescu, A. Avramescu, C. Bala, V. Magearu, and J.-L. Marty
Anal. Bioanal. Chem. 374, 2002, 39-45
https://doi.org/10.1007/s00216-002-1442-4
[4] Biosensors designed for environmental and food quality control based on screen-printed graphite electrodes with different configurations
A. Avramescu, S. Andreescu, T. Noguer, C. Bala, D. Andreescu, and J.-L. Marty
Anal. Bioanal. Chem. 374, 2002, 25-32
2001
[3] Immobilization of enzymes on screen-printed sensors via an histidine tail. Application to the detection of pesticides using modified cholinesterase
S. Andreescu, V. Magearu, A. Lougarre, D. Fournier, and J.-L. Marty
Anal. Lett., 34 (4), 2001, 429-540
https://doi.org/10.1081/AL-100002593
[2] The potential of screen printed electrodes for the development of biosensors – applications in environmental and food industry
A. Avramescu, S. Andreescu, C. Bala, V. Magearu, and J.-L. Marty
U.P.B. Sci. Bull. Series D, 63 (1), 2001, 318-328
[1] Development of screen-printed sensors for phenol and their application in ambient air samples
D. Andreescu, S. Andreescu, C. Bala, A.F. Danet, and J.-L. Marty
U.P.B. Sci. Bull. Series D, 63 (1), 2001, 309-316