Articles

2024

[153]  Sensitive Detection of Perfluoroalkyl Substances Using MXene–AgNP-Based Electrochemical Sensors

R. Khan, Z.O. Uygun, D. Andreescu, and S. Andreescu 

ACS Sens., 9(6), 2024, 3403-3412

https://doi.org/10.1021/acssensors.4c00776 

[152Atomically Precise Hexanuclear Ce(IV) Clusters as Functional Fluorescent Nanosensors for Rapid One-Step Detection of PFAS

M.H. Hassan, R. Khan, D. Andreescu, S. Shrestha, M. Cotlet and S. Andreescu 

Adv. Funct. Mater., 2024, 202403364

https://doi.org/10.1002/adfm.202403364 

 

[151Two decades of ceria nanoparticles research: structure, properties and emerging applications

A. Othman, A. Gowda, D. Andreescu, M.H. Hassan, S.V. Babu, J. Seo, and S. Andreescu 

Mater. Horiz., 2024

https://doi.org/10.1039/D4MH00055B 


[150Covalent organic frameworks (COFs) as carrier for improved drug delivery and biosensing applications

R. Younas, F. Jubeen, N. Bano, S. Andreescu, H. Zhang, A. Hayat 

Biotechnol. Bioeng., 2024, 1-33

https://doi.org/10.1002/bit.28718 


[149Review—Catalytic Electrochemical Biosensors for Dopamine: Design, Performance, and Healthcare Applications

E. DeVoe, and S. Andreescu 

ECS Sensors Plus, 3(2), 2024, 020601

https://iopscience.iop.org/article/10.1149/2754-2726/ad3950


[148Physiological and molecular modulations to drought stress in the Brassica species

M.J. Yoo, Y. Hwang, Y.M. Koh, F. Zhu, A.S. Deshpande, T. Bechard, and S. Andreescu 

Int. J. Mol. Sci., 25(6), 2024, 3306

https://doi.org/10.3390/ijms25063306  


[147A review of nanophotonic structures in optofluidic biosensors for food safety and analysis

S. Bilal, A. Tariq, S.I. Khan, M. Liaqat, S. Andreescu, H, Zhang, and A. Hayat

Trends Food Sci. Technol., 2024, 104428

https://doi.org/10.1016/j.tifs.2024.104428  


[146Sensors for emerging water contaminants: Overcoming roadblocks to innovation

M. Ateia, H. Wei, and S. Andreescu 

Environ. Sci. Technol., 2024

https://doi.org/10.1021/acs.est.3c09889 


[145Catalytic MXCeO2 for enzyme based electrochemical biosensors: Fabrication, characterization and application towards a wearable sweat biosensor

R. Khan, and S. Andreescu 

Biosens. Bioelectron., 248, 2024, 115975  

https://doi.org/10.1016/j.bios.2023.115975    


[144Tailoring molecular recognition in predesigned multifunctional enzyme mimicking porphyrin imprinted interface for high affinity and

  differential selectivity; sensing etoposide in lung cancer patients

A. Tariq, A. Arif, M. Akram, U. Latif, M.H. Nawaz, S. Andreescu, H. Zhang, and A. Hayat 

Biosens. Bioelectron., 245, 2024, 115833 

https://doi.org/10.1016/j.bios.2023.115833


[143Aptamer-based electrochemical biosensor with S protein binding affinity for COVID-19 detection: Integrating computational design with

 experimental validation of S Protein binding affinity

R. Khan, A.S. Deshpande, G. Proteasa, and S. Andreescu 

Sens. Actuators B Chem., 399, 2024, 134775   

https://doi.org/10.1016/j.snb.2023.134775   

2023

[142]  Tuning the Fluorometric Sensing of Phosphate on UiO-66-NH2(Zr, Ce, Hf) Metal Nodes (cover page)

M. H. Hassan, and S. Andreescu

Inorg. Chem., 62(51), 2023, 20970–20979 

https://doi.org/10.1021/acs.inorgchem.3c02318


[141Direct real-time measurements of superoxide release from skeletal muscles in rat limbs and human blood platelets using an implantable

 Cytochrome C microbiosensor

A.S. Deshpande, W. Muraoka, J. Wait, A. Çolak, and S. Andreescu 

Biosens. Bioelectron., 240, 2023, 115664 

https://doi.org/10.1016/j.bios.2023.115664  


[140Carbon-based electrochemical biosensors as diagnostic platforms for connected decentralized healthcare

A. Khan, E. DeVoe, and S. Andreescu

Sens. Diagn., 2023, 2, 529-558

https://doi.org/10.1039/D2SD00226D  


[139Current and emerging analytical techniques for the determination of PFAS in environmental samples

A. Rehman, M. Crimi, and S. Andreescu

Trends Environ. Anal. Chem. (TrEAC), 2023, e00198 

https://doi.org/10.1016/j.teac.2023.e00198  

2022

[138Nanoelectrochemistry Reveals Selective Interactions of Perfluoroalkyl Substances (PFASs) with Silver Nanoparticles (cover page)

R. Khan, D. Andreescu, M. H. Hassan, J. Ye, and S. Andreescu

Angew. Chem., Int. Ed., 61(42), 2022, e202209164   

https://doi.org/10.1002/anie.202209164 


[1373D printable polyethyleneimine based hydrogel adsorbents for heavy metal ions removal

A.S. Finny, N. Cheng, O. Popoola, and S. Andreescu

Environ. Sci.: Adv. 1(4), 2022, 443-455 

https://doi.org/10.1039/D2VA00064D  


[136Advances in electrochemical detection methods for measuring contaminants of emerging concerns

M. H. Hassan, R. Khan, and S. Andreescu

Electrochem. Sci. Adv. 2(6), 2022, e2100184 

https://doi.org/10.1002/elsa.202100184


[135Time-dependent monitoring of dopamine in the brain of live embryonic zebrafish using electrochemically pretreated carbon fiber microelectrodes

E. Dumitrescu, A. Deshpande, K. Wallace, and S. Andreescu

ACS Meas. Sci. Au 2(3), 2022, 261-270 

https://doi.org/10.1021/acsmeasuresciau.1c00051 


[134]  Nanoceria surface: the most sensitive redox-triggered one step nano-amplifier for fluorescence signal of ochratoxin A

S. Rashid, Z. Zaman, N. Nasir, A. Ahmed, S. Andreescu, M. Liaqat, and A. Hayat

  J. Nanostruct. Chem., 12, 2022, 223-233

https://doi.org/10.1007/s40097-021-00413-w 

2021

[133Nanoparticle-based amplification for sensitive detection β-galactosidase activity in fruits

F. Mustafa, S. Liebich, and S. Andreescu

Anal. Chem. Acta, 1186, 2021, 339129 

https://doi.org/10.1016/j.aca.2021.339129


[132A 3D-Printed Breath Analyzer Incorporating CeO2 Nanoparticles for Colorimetric Enzyme-Based Ethanol Sensing

F. Mustafa, M. Carhart, and S. Andreescu

ACS Appl. Nano Mater., 4(9), 2021, 9361–9369 

https://doi.org/10.1021/acsanm.1c01826


[131]  3D-Printable Nanocellulose-Based Functional Materials: Fundamentals and Applications

A.S. Finny, O. Popoola, and S. Andreescu

Nanomaterials, 11(9), 2021, 2358 

https://doi.org/10.3390/nano11092358


[130]  Advances in electrochemical detection for probing protein aggregation

S. Andreescu, and A. Vasilescu

Curr. Opin. Electrochem., 30, 2021, 100820

https://doi.org/10.1016/j.coelec.2021.100820


[129]  Morphology controlled NiO nanostructures as fluorescent quenchers for highly sensitive aptamer-based FRET detection of ochratoxin A

A. Khan, M.A.H. Nawaz, N. Akhtar, R. Raza, C. Yu, S. Andreescu, and A. Hayat

  Appl. Surf. Sci., 566, 2021, 150647

https://doi.org/10.1016/j.apsusc.2021.150647 


[128]  Electrochemical Sensors for Oxidative Stress Monitoring

A.S. Deshpande, W. Muraoka, and S. Andreescu

       Curr. Opin. Electrochem., x, 2021, 100809

https://doi.org/10.1016/j.coelec.2021.100809


[127]  Ceria Nanoparticles Theranostics: Harnessing Antioxidant Properties in Biomedicine and Beyond

S. Banavar, A. Deshpande, S. Sur, and S. Andreescu

  J. Phys. Mater., 4(4), 2021, 042003

https://iopscience.iop.org/article/10.1088/2515-7639/ac0594/meta 


[126]  Cerium Oxide-based Hypoxanthine Biosensor for Fish Spoilage Monitoring

F. Mustafa, A. Othman, and S. Andreescu

       Sens. Actuators B Chem., 332, 2021, 129435

https://doi.org/10.1016/j.snb.2021.129435


[125]  Highly sensitive mercury detection using electroactive gold-decorated polymer nanofibers

F.H. Narouei, L. Livernois, D. Andreescu, and S. Andreescu

       Sens. Actuators B Chem., 329, 2021, 129267

https://doi.org/10.1016/j.snb.2020.129267 


[124]  Two-dimensional Nanostructures for Electrochemical Biosensor

R. Khan, A. Radoi, S. Rashid, A. Hayat, A. Vasilescu, and S. Andreescu

       Sensors, 21(10), 2021, 3369

https://doi.org/10.3390/s21103369


[123]  Collision-Based Electrochemical Detection of Lysozyme Aggregation

K.A. Kirk, A. Vasilescu, D. Andreescu, D. Senarathna, S. Mondal, and S. Andreescu

       Anal. Chem., 93(4), 2021, 2026-2037

https://doi.org/10.1021/acs.analchem.0c03578 


[122]  Addressing the Selectivity of Enzyme Biosensors: Solutions and Perspective

B. Bucur, C. Purcarea, S. Andreescu, and A. Vasilescu

      Sensors, 21(9), 2021, 3038

https://doi.org/10.3390/s21093038


[121]  Microbial Electrochemical Systems: Principles, Construction and Biosensing Applications

R.Y.A. Hassan, F. Febbraio, and S. Andreescu

  Sensors, 21(4), 2021, 1279

https://dx.doi.org/10.3390%2Fs21041279


[120]  Electrochemical Quantification of Lead Adsorption on TiO2 Nanoparticles

F.H. Narouei, K.A. Kirk, and S. Andreescu

       Electroanalysis, 33(1), 2021, 188-196

https://doi.org/10.1002/elan.202060152  

2020

[119]  Paper-Based Enzyme Biosensor for One-Step Detection of Hypoxanthine in Fresh and Degraded Fish

F. Mustafa, and S. Andreescu

       ACS Sens., 5(12), 2020, 4092-4100

https://doi.org/10.1021/acssensors.0c02350 


[118]  Ultrafast Removal of Phosphate from Eutrophic Waters Using a Cerium-Based  Metal–Organic Framework

M.H. Hassan, R. Stanton, J. Secora, D.J. Trivedi and S. Andreescu

       ACS Appl. Mater. Interfaces, 12(47), 2020, 52788-52796

https://doi.org/10.1021/acsami.0c16477 


[117]  Cerium Oxide Nanoparticles Stabilized within Metal−Organic Frameworks for the  Degradation of Nerve Agents

M.H. Hassan, D. Andreescu, and S. Andreescu

  ACS Appl. Nano Mater., 3, 2020, 3288-3294

https://doi.org/10.1021/acsanm.0c00015 


[116]  3D Printed Hydrogel-based Sensors for Quantifying UV Exposure

A.S. Finny, C. Jiang, and S. Andreescu

ACS Appl. Mater. Interfaces, 12(39), 2020, 43911-43920

https://doi.org/10.1021/acsami.0c12086 


[115]  Easy to use and inexpensive sensors for assessing the quality and traceability of cosmetic antioxdiants

A. Othman, L. Norton, A.S. Finny, and S. Andreescu

       Talanta, 208, 2020, 120473

https://doi.org/10.1016/j.talanta.2019.120473


[114]  MXenes-Based Bioanalytical Sensors: Design, Characterization, and Applications

R. Khan, and S. Andreescu

       Sensors, 20(18), 2020, 5434

https://doi.org/10.3390/s20185434 


[113]  Rapid Characterization of arsenic adsorption on single magnetic nanoparticles by collisions at microelectrodes

F.H. Narouei, D. Andreescu and S. Andreescu

       Environ. Sci. Nano, 7, 2020, 1999-2009

https://doi.org/10.1039/D0EN00336K 


[112]  Nanotechnology-based approaches for food sensing and packaging applications

F. Mustafa, and S. Andreescu

       RSC Adv., 33(10), 2020, 19309-19336

https://doi.org/10.1039/D0RA01084G

2019

[111]  Magnetic particles-based analytical platforms for food safety monitoring

R. Khan, A. Rehman, A. Hayat, and S. Andreescu

       Magnetochemistry, 5(4), 2019, 63

https://doi.org/10.3390/magnetochemistry5040063 


[110]  Recyclable adsorbents based on  ceria nanostructures on mesoporous silica beads for the removal and recovery of phosphate from eutrophic waters

A. Othman, P. Vargo, and S. Andreescu

       ACS Appl. Nano Mater., 2(1), 2019, 7008-7018

https://doi.org/10.1021/acsanm.9b01512 


[109]  Easy-to-Use Sensors for filed monitoring of copper contamination in water and pesticide-sprayed plants

K.A. Kirk, and S. Andreescu

      Anal. Chem., 91(21), 2019, 13892-13899

https://doi.org/10.1021/acs.analchem.9b03385


[108]  Online monitoring of biofilm formation using nanostructured electrode surfaces

M. Sedki, R.Y.A. Hassan, S. Andreescu, and I.M. El-Sherbiny

       Mater, Sci. Eng. C, 100, 2019, 178-185

https://doi.org/10.1016/j.msec.2019.02.112


[107]  Single-particle investigation of environmental redox processes of arsenic on cerium oxide nanoparticles by collision electrochemistry

A. Karimi, D. Andreescu, and S. Andreescu

       ACS Appl. Mater. Interfaces, 1(10), 2019, 5722-5735

https://doi.org/10.1021/acsami.9b05234


[106]  Differential lethal and sublethal effects in embryionic zebrafish exposed to different sizes of silver nanoparticles

X. Liu, E. Dumitrescu, A. Kumar, D. Austin, D.V. Goia, K.N. Wallace, and S. Andreescu

       Environ Pollut., 248, 2019, 627-634

https://doi.org/10.1016/j.envpol.2019.02.085

2018

[105]  Chemical and Biological Sensors for Food-Quality Monitoring and Smart Packaging

    F. Mustafa, and S. Andreescu

       Foods, 7(10), 2018, 168

https://doi.org/10.3390/foods7100168 


[104]  Eu-doped Ceria as a Nanoenzyme Fluorescent Probe for Biosensing

    A. Othman, A. Hayat, and S. Andreescu

       ACS Appl. Nano Mater., 1(10), 2018, 5722-5735

https://doi.org/10.1021/acsanm.8b01345 


[103]  Electroanalytical aspects of single-entity collision methods for bioanalytical and environmental applications

    D. Andreescu, K.A. Kirk, F.H. Narouei, and S. Andreescu

       ChemElectroChem., 5, 2018, 2920-2936

https://doi.org/10.1002/celc.201800722 


[102]  Nanoporous sorbents for the removal and recovery of Phosphorous from Eutrophic waters : sustainability challenges and solutions

    A. Othman, E. Dumitrescu, D. Andreescu, and S. Andreescu

       ACS Sustain. Chem. Eng., 6(10), 2018, 12542-12561

https://doi.org/10.1021/acssuschemeng.8b01809 


[101]  DNA assay based on nanoceria as fluorescence quenchers (NanoCeracQ DNA assay)

    G. Bulbul, A. Hayat, F. Mustafa, and S. Andreescu

       Sci. Rep., 8(1), 2018, 2426

https://doi.org/10.1038/s41598-018-20659-9 


[100]  Real Time Electrochemical Investigation of the Release, Distribution and Modulation of Nitric Oxide in the Intestine of Individual Zebrafish Embryos

    E. Dumitrescu, K.N. Wallace, and S. Andreescu

       Nitric Oxide, 74, 2018, 32-38

https://doi.org/10.1016/j.niox.2018.01.002


[99]  Interaction, transformation and toxicity assessment of particles and additives used in the semiconducting industry

    E. Dumitrescu, D.P. Karunaratne, S.V. Babu, K.N. Wallace, and S. Andreescu

       Chemosphere, 192, 2018, 178-185

https://doi.org/10.1016/j.chemosphere.2017.10.138


[98]  Nanomaterial-functionalized cellulose: design, characterization and analytical applications

  K.A. Kirk, A. Othman, and S. Andreescu

     Anal. Sci., 34, 2018, 19-31

https://doi.org/10.2116/analsci.34.19 

2017

[97]  Multifunctional Nanotechnology-Enabled Approaches for Rapid Capture and Detection of Pathogens

  F. Mustafa, R.Y.A. Hassan, and S. Andreescu

     Sensors, 17(9), 2017, 2121

https://doi.org/10.3390/s17092121 


[96]  Electrochemical Investigation of pH-Dependent Activity of Polyethyleneimine-Capped Silver Nanoparticles

  A. Karimi, K.A. Kirk, and S. Andreescu (cover feature)

     ChemElectroChem, 4(11), 2017, 2801-2806

https://doi.org/10.1002/celc.201700460 


[95]  CeO2-Assisted Biocatalytic Nanostructures for Laccase-Based Biocathodes and Biofuel Cells

  A. Karimi, and S. Andreescu

     J. Electrochem. Soc., 164(9), 2017, G92-G98

https://doi.org/10.1149/2.0931709jes 


[94]  Developmental toxicity of glycine-coated silica nanoparticles in embryonic zebrafish

  E. Dumitrescu, D.P. Karunaratne, M.K. Prochaska, X. Liu, K.N. Wallace, and S. Andreescu

     Environ. Pollut., 229, 2017, 439-447

https://doi.org/10.1016/j.envpol.2017.06.016


[93]  Lethality of MalE-LacZ hybrid protein shares mechanistic attributes with oxidative component of antibiotic lethality

  N. Takahashi, C.C. Gruber, J.H. Yang, X. Liu, D. Braff, C.N. Yashaswini, S. Bhubhanil, Y. Furuta, S. Andreescu, J.J. Collins and G.C. Walker

     PNAS, 114(34), 2017, 9164-9169

https://doi.org/10.1073/pnas.1707466114 


[92]  Europium-Doped Cerium Oxide Nanoparticles Limit Reactive Oxygen Species Formation and Ameliorate Intestinal Ischemia-reperfusion Injury

  E.O. Gubernatorova, X. Liu, A. Othman, W.T. Muraoka, E.P. Koroleva, A. Tumanov, and S. Andreescu

     Adv. Healthc. Mater., 6(14), 2017, 1700176

https://doi.org/10.1002/adhm.201700176 


[91]  Biomolecular detection at ssDNA-conjugated nanoparticles by nano-impact electrochemistry

  A. Karimi, A. Hayat, and S. Andreescu

     Biosens. Bioelectron., 87, 2017, 501-507

https://doi.org/10.1016/j.bios.2016.08.108


[90]  Functionalized Paper-based Platform for Rapid Capture and Detection of CeO2 nanoparticles

  A. Othman, D. Andreescu, D.P. Karunaratne, S.V. Babu, and S. Andreescu

     ACS Appl. Mater. Interfaces, 9(14), 2017, 12893-12905

https://doi.org/10.1021/acsami.7b02823 

2016

[89]  Functional nanostructures for enzyme based biosensors: Properties, fabrication and applications

A. Othman, A. Karimi, and S. Andreescu

J. Mater. Chem. B, 4, 2016, 7178-7203

https://doi.org/10.1039/C6TB02009G 


[88]  Reactivity of nanoceria particles exposed to biologically relevant catechol-containing molecules

G. Bulbul, A. Hayat, X. Liu, and S. Andreescu

RSC Adv., 6, 2016, 60007-60014

https://doi.org/10.1039/C6RA07279H 


[87]  Real-time investigation of antibiotics-induced oxidative stress and superoxide release in bacteria using an electrochemical biosensor

X. Liu, M. Marrakchi, M. Jahne, S. Rogers, and S. Andreescu

Free Radic. Biol. Med., 91, 2016, 25-33 

https://doi.org/10.1016/j.freeradbiomed.2015.12.001


[86]  Biosensors based on modularly designed synthetic peptides for recognition, detection and live/dead differentiation of pathogenic bacteria

X. Liu, M. Marrakchi, D. Xu, H. Dong, and S. Andreescu

Biosens. Bioelectron., 80, 2016, 9-16

https://doi.org/10.1016/j.bios.2016.01.041


[85]  ssDNA-functionalized nanoceria : A universal redox active aptaswitch for biomolecular recognition

G. Bulbul, A. Hayat, and S. Andreescu

Adv. Healthc. Mater., 5(7), 2016, 822-828, (cover page)

https://doi.org/10.1002/adhm.201500705 


[84]  A single use electrochemical sensor based on biomimetic nanoceria for the detection of wine antioxidants

V. Andrei, E. Sharpe, A. Vasilescu and S. Andreescu

Talanta, 156-157, 2016, 112-118

https://doi.org/10.1016/j.talanta.2016.04.067


[83]  An acetylcholinesterase (AChE) biosensor with enhanced solvent resistance based on chitosan for detection of pesticides

J. Warner, and S. Andreescu

Talanta, 146, 2016, 279-284

https://doi.org/10.1016/j.talanta.2015.08.030


[82]  Effects of brewing conditions on the antioxidant capacity of twenty-four commercial green tea varieties

E. Sharpe, F. Hua, S. Schukers, S. Andreescu, and R. Bradley

Food Chem., 192, 2016, 380-387

https://doi.org/10.1016/j.foodchem.2015.07.005  

2015

[81]  Portable Nanoparticle-Based Sensors for Food Safety Assessment

G. Bulbul, A. Hayat, and S. Andreescu

Sensors, 15, 2015, 30736-30758

https://doi.org/10.3390/s151229826  


[80]  A generic amplification strategy for electrochemical aptasensors using a non-enzymatic nanoceria tag

G. Bulbul, A. Hayat, and S. Andreescu

  Nanoscale, 7, 2015, 13230-13238

https://doi.org/10.1039/C5NR02628H 


[79]  Portable Colorimetric Paper-Based Biosensing Device for the Assessment of Bisphenol A in Indoor Dust

R.S.J. Alkasir, A. Rossner, and S. Andreescu 

Environ. Sci. Technol., 49(16), 2015, 9889-9897

https://doi.org/10.1021/acs.est.5b01588 


[78] Evaluation of the oxidase like activity of nanoceria and its application in colorimetric assays

A. Hayat, J. Cunningham, G. Bulbul, and S. Andreescu

Anal. Chim. Acta, 885, 2015, 140-147

https://doi.org/10.1016/j.aca.2015.04.052


[77]  Platinum-doped ceria based biosensor for in vitro and in vivo monitoring of lactate during hypoxia

N.P. Sardesai, M. Ganesana, A. Karimi, J.C. Leiter, and S. Andreescu 

Anal. Chem., 87(5), 2015, 2996-3003

https://doi.org/10.1021/ac5047455 


[76] Graphene based enzymatic bioelectrodes and biofuel cells

A. Karimi, A. Othman, A. Uzunoglu, L.A. Stanciu, and S. Andreescu

Nanoscale, 7, 2015, 6909-6923

https://doi.org/10.1039/C4NR07586B 


[75]  CeO2 –MO x (M: Zr, Ti, Cu) mixed metal oxides with enhanced oxygen storage capacity

A. Uzunoglu, H. Zang, S. Andreescu and L.A. Stanciu 

J. Mater. Sci., 15(10), 2015, 3750-3762

https://doi.org/10.1007/s10853-015-8939-7 


[74] Integration of Nanoparticle Based Paper Sensors into the Classroom: an Example of Application for Rapid Colorimetric Analysis of Antioxidants

E. Sharpe, and S. Andreescu

J. Chem. Educ., 92, 2015, 886-891

https://doi.org/10.1021/ed400851m 

2014

[73] Engineered Pt doped nanoceria for oxidase based bioelectrodes operating in oxygen deficient environment

N.P. Sardesai, A. Karimi, and S. Andreescu

ChemElectroChem, 1(12), 2014, 2082-2088

https://doi.org/10.1002/celc.201402250


[72]  Recent Developments in Electrochemical Sensors for the Detection of Neurotransmitters for Applications in Biomedicine

E.R. Ozel, A. Hayat, and S. Andreescu 

Anal. Lett., 48(7), 2014, 1044-1069

https://doi.org/10.1080/00032719.2014.976867 


[71] Applications and Implications of Nanoceria Reactivity: Measurement Tools and Environmental Impact

D. Andreescu, G. Bulbul, E.R. Ozel, A. Hayat, N.P. Sardesai, and S. Andreescu

Environ. Sci. Nano, 1, 2014, 445-458

https://doi.org/10.1039/C4EN00075G 


[70]  Electrochemical methods for nanotoxicity assessment

E.R. Ozel, X. Liu, R.S.J. Alkasir, and S. Andreescu

Trends Anal. Chem., 59, 2014, 112-120

https://doi.org/10.1016/j.trac.2014.04.006  


[69]  Probing phosphatase activity using redox active nanoparticles: A novel colorimetric approach for the detection of enzyme activity

A. Hayat, G. Bulbul, and S. Andreescu

Biosens. Bioelectron., 56, 2014, 334-339

https://doi.org/10.1016/j.bios.2014.01.003


[68]  Redox reactivity of cerium oxide nanoparticles against dopamine

A. Hayat, D. Andreescu, G. Bulbul, and S. Andreescu

J. Colloid Interface Sci., 418, 2014, 240-245

https://doi.org/10.1016/j.jcis.2013.12.007 


[67]  Metal oxide based multisensor array and portable database for field analysis of antioxidants

E. Sharpe, B. Bradley, T. Fresco, D. Jayathilaka, A. Marsh, and S. Andreescu

Sens. Actuators B Chem., 193, 2014, 552-562

https://doi.org/10.1016/j.snb.2013.11.08 


[66]  Glutamate oxidase biosensor based on mixed ceria and titania nanoparticles for the detection of glutamate in hypoxic environments

E.R. Ozel, C.R. Ispas, M. Ganesana, J.C. Leiter, and S. Andreescu

Biosens. Bioelectron., 52, 2014, 2240-2249

https://doi.org/10.1016/j.bios.2013.08.054


[65]  Alterations of intestinal serotonin following nanoparticle exposure in embryonic zebrafish

E.R. Ozel, K.N. Wallace, and S. Andreescu

Environ. Sci. Nano, 1, 2014, 27-36

https://doi.org/10.1039/C3EN00001J  

2013

[64]  Electroanalytical evaluation of antioxidant activity of cerium oxide nanoparticles by nanoparticle collisions at microelectrodes

N.P. Sardesai, D. Andreescu, and S. Andreescu

J. Am. Chem. Soc., 135(45), 2013, 16770-16773

https://doi.org/10.1021/ja408087s 


[63]  Nanoceria Particles As Catalytic Amplifiers for Alkaline Phosphatase Assays

A. Hayat, and S. Andreescu

Anal. Chem., 85(21), 2013, 10028-10032

https://doi.org/10.1021/ac4020963  


[62]  Effect of cerium oxide nanoparticles on intestinal serotonin in zebrafish

R.E. Ozel, A. Hayat, K.N. Wallace, and S. Andreescu

RSC Adv., 3, 2013, 15298-15309

https://doi.org/10.1039/C3RA41739E 


[61]  Comparative Evaluation of Intestinal Nitric Oxide in Embryonic Zebrafish Exposed to Metal Oxide Nanoparticles

R.E. Ozel, R.S.J. Alkasir, K. Ray, K.N. Wallace, and S. Andreescu

Small, 9(24), 2013, 4250-4261

https://doi.org/10.1002/smll.201301087


[60]  Design of PEG-aptamer two piece macromolecules as convenient and integrated sensing platform: Application to the label free detection of small size molecules

A. Hayat, S. Andreescu, and J.-L. Marty

Biosens. Bioelectron., 45, 2013, 168-173

https://doi.org/10.1016/j.bios.2013.01.059


[59]  A conceptual framework for the development of a course in nano/micro-scale systems engineering 

C. Cetinkaya, I.I. Suni, S. Andreescu, M.B. Esch, W. Cui, D.J. Jones, S. Jones, G.S. Chojecki, J.D. Stephens, and A.S.Vahdat

J. Nano Educ., 5, 2013, 1-9

https://doi.org/10.1166/jne.2013.1054 


[58]  Loss of ascl1a prevents secretory cell differentiation within the zebrafish intestinal epithelium resulting in a loss of posterior intestinal motility

G. Roach, R.H. Wallace, A. Cameron, R.E. Ozel, C.F. Hongay, R. Baral, S. Andreescu, and K.N. Wallace

Dev. Biol., 376(2), 2013, 171-186

https://doi.org/10.1016/j.ydbio.2013.01.013


[57]  Portable nanoparticle based technology for rapid detection of food antioxidants (NanoCerac) 

E. Sharpe, T. Fresco, D. Andreescu, and S. Andreescu

Analyst, 138(1), 2013, 249-262

https://doi.org/10.1039/C2AN36205H 

2012

[56]  Colorimetric paper bioassay for the detection of phenolic compounds 

R.S.J. Alkasir, M. Ornatska, and S. Andreescu

     Anal. Chem., 84, 2012, 9729-9737

https://doi.org/10.1021/ac301110d 


[55]  Real-time monitoring of superoxide accumulation and antioxidant activity in a brain slice model using an electrochemical cytochrome c biosensor

M. Ganesana, J.S. Erlichman, and S. Andreescu 

     Free Radic. Biol. Med., 53, 2012, 2240-2249

https://doi.org/10.1016/j.freeradbiomed.2012.10.540


[54]  Review: Recent developments in enzyme-based biosensors for biomedical applications 

C.R. Ispas, G. Crivat, and S. Andreescu

     Anal. Lett., 45, 2012, 168-186, (Invited)

https://doi.org/10.1080/00032719.2011.633188  


[53]  Nanoparticle based technologies for the detection of food antioxidants

A. Vasilescu, E. Sharpe, and S. Andreescu 

     Curr. Anal. Chem., 8(4), 2012, 495-505

https://doi.org/10.2174/157341112803216780 

2011

[52]  Site-specific immobilization of a (His)6-tagged acetylcholinesterase on nickel nanoparticles for highly sensitive toxicity biosensors

M. Ganesana, G. Istambouille, J.-L. Marty, T. Noguer, and S. Andreescu 

     Biosens. Bioelectron., 30, 2011, 43-48

https://doi.org/10.1016/j.bios.2011.08.024


[51]  Neuroprotective mechanisms of cerium oxide nanoparticles in a mouse hippocampal brain slice model of ischemia 

    A.Y. Estevez, S. Pritchard, K. Harper, J.W. Aston, A. Lynch, J.J. Lucky, J.S. Ludington, P. Chantani, W. Mosenthal, J.C. Leiter, S. Andreescu, J.S. Erlichman

     Free Radic. Biol. Med., 51, 2011, 1155-1163

https://doi.org/10.1016/j.freeradbiomed.2011.06.006


[50]  Ceria nanoparticles as colorimetric probes in paper-based bioassays

M. Ornatska, E. Sharpe, D. Andreescu, and S. Andreescu 

     Anal. Chem., 83(11), 2011, 4273-4280

https://doi.org/10.1021/ac200697y  


[49]  Chitosan functionalized carbon fiber microelectrodes for real-time in vivo detection of neurotransmitters in live embryonic zebrafish 

E.R. Ozel, K.N. Wallace, and S. Andreescu

     Anal. Chim. Acta, 695(1-2), 2011, 89-95

https://doi.org/10.1016/j.aca.2011.03.057 


[48]  Adsorption of Arsenic by Iron Oxide Nanoparticles: A Versatile, Inquiry Based Laboratory for Undergraduate Science Course

D. VanDorn, M.T. Ravalli,  M.M. Small, B. Hillery, and S. Andreescu 

     J. Chem. Educ., 88(8), 2011, 1119-1122

https://doi.org/10.1021/ed100010c  

2010

[47]  Enzyme functionalized nanoparticles for electrochemical biosensors: A comparative study with applications for the detection of bisphenol A

R.S.J. Alkasir, M. Ganesana, Y.-H. Won, L. Stanciu, and S. Andreescu 

     Biosens, Bioelectron., 26, 2010, 43-49

https://doi.org/10.1016/j.bios.2010.05.001 


[46]  Development of a xanthine oxidase modified amperometric electrode for the determination of superoxide radicals 

M. Cortina-Puig, A.C.H. Scangas, Z.S. Marchese, S. Andreescu, J.L.Marty, and C. Calas-Blanchard

     Electroanalysis., 22(20), 2010, 2429-2433

https://doi.org/10.1002/elan.201000248 


[45]  Electrochemical quantification of serotonin in the live embryonic zebrafish intestine

J. Njagi, M. Ball, K.N. Wallace and S. Andreescu 

     Anal. Chem., 82(5), 2010, 1822-1830

https://doi.org/10.1021/ac902465v


[44]  Amperometric detection of dopamine in vivo with an enzyme based carbon fiber microbiosensor 

J. Njagi, M.M. Chernov, J.C. Leiter and S. Andreescu

     Anal. Chem., 82(3), 2010, 989-996

https://doi.org/10.1021/ac9022605 


[43]  Biomagnetic capsules for easy removal of phenol and bisphenol A

C.R. Ispas, M.T. Ravalli, A. Steere, and S. Andreescu 

     Water Res., 44, 2010, 1961-1969

https://doi.org/10.1016/j.watres.2009.11.049 


[42]  AChE Biosensor based on zinc oxide sol-gel for the detection of pesticides 

R. Sinha, M. Ganesana, S. Andreescu and L. Stanciu

     Anal. Chim. Acta, 661(2), 2010, 195-199

https://doi.org/10.1016/j.aca.2009.12.020


[41]  Biomagnetic glasses: preparation, characterization and biosensor applications 

Y.-H. Won, H.S. Jang, S.M. Kim, M. Ganesana, E. Stach, S. Andreescu and L.A. Stanciu

     Langmuir, 26(6), 2010, 4320-4326

https://doi.org/10.1021/la903422q  


[40]  A sensitive electrochemical sensor based on chitosan and electropolymerized Meldola blue for monitoring NO in brain slices 

J. Njagi, J.S. Erlichman, J.W. Aston, J.C. Leiter, and S. Andreescu

     Sens. Actuators B Chem., 143(2), 2010, 673-680

https://doi.org/10.1016/j.snb.2009.10.029

2009

[39]  Toxicity and developmental defects of different sizes and shape nickel nanoparticles in zebrafish

C. Ispas, D. Andreescu, A. Patel, D.V. Goia, K. Wallace and S. Andreescu

Environ. Sci. Technol., 43(16), 2009, 6349-6356

https://doi.org/10.1021/es9010543 


[38]  Enzyme functionalized mesoporous silica for bioanalytical applications 

C. Ispas, I. Sokolov, and S. Andreescu

Anal. Bioanal. Chem., 393(2), 2009, 543-554

https://doi.org/10.1007/s00216-008-2250-2 


[37]  Applications of advanced nanomaterials for environmental monitoring 

S. Andreescu, J. Njagi, C. Ispas, and M. Ravalli

J. Environ. Monit., 11, 2009, 27-40. (Critical review)

https://doi.org/10.1039/B811063H 

(JEM Spotlight article, Top 10 most accessed articles in 2009 and 2010) 


[36]  Magnetic Particles-Based Hybrid Platforms for Bioanalytical Sensors 

L. Stanciu, Y.-H. Won, M. Ganesana, and S. Andreescu

     Sensors, 9(4), 2009, 2976-2999

https://doi.org/10.3390/s90402976 

2008

[35]  Mixed Ceria Based Metal Oxides Biosensor for Operation in Oxygen Restrictive Environments 

J. Njagi, C. Ispas, and S. Andreescu

Anal. Chem., 80(19), 2008, 7266-7274

https://doi.org/10.1021/ac800808a


[34]  Electrochemical Studies of ceria as electrode material for sensing and biosensing applications 

C. Ispas, J. Njagi, and S. Andreescu

J. Electrochem. Soc., 155(8), 2008, F169-F176

https://doi.org/10.1149/1.2936178  


[33]  Studies of the binding and signaling of surface-immobilized periplasmic glucose receptors on gold nanoparticles: A glucose biosensor application 

S. Andreescu, and L.A. Luck

Anal. Biochem., 375, 2008, 282-290

https://doi.org/10.1016/j.ab.2007.12.035

2007

[32]  Stable enzyme biosensors based on chemically synthesized Au-polypyrrole nanocomposite 

J. Njagi, and S. Andreescu

     Biosens. Bioelectron., 23(2), 2007, 768-775

https://doi.org/10.1016/j.bios.2007.03.028


[31]  Highly sensitive detection of organophosphorus insecticides using magnetic microbeads and genetically engineered acetylcholinesterase

G. Istamboulie, S. Andreescu, J.-L. Marty and T. Noguer

     Biosens. Bioelectron., 23(4), 2007, 506-512

https://doi.org/10.1016/j.bios.2007.06.022 


[30]  Integration of Nanomaterials into the Undergraduate Chemistry Curriculum: Synthesis and Characterization of Gold Nanoparticles 

D.V. Goia, D. Andreescu, and S. Andreescu

     The Chemical Educator,  12(4), 2007, 263-266

chemeducator.org/bibs/0012004/12070263sa.htm


[29] Existence and Reactivity of Three Forms of Orthophthalaldehyde in Aqueous Solutions. Polarographic, Voltammetic and Spectrophotometric Study  

N. Salem, S. Andreescu, E. Kulla and P. Zuman

  J. Phys. Chem. A, 111, 2007, 4658-4670

https://doi.org/10.1021/jp071151s


[28]  A Bioanalytical Chemistry Experiment for Undergraduate Students: Biosensors Based on Metal Nanoparticles 

J. Njagi, J. Warner, and S. Andreescu

J. Chem. Educ.,  84(7), 2007, 1180-1182

https://doi.org/10.1021/ed084p1180 


[27] Effect of benzotriazole derivatives on corrosion of steel in simulated concrete pore solutions  

M. Sheban, M. Abu-Dalo, A. Ayman, and S. Andreescu

Anti-corrosion Methods and Materials, 54(3), 2007, 135-147

https://doi.org/10.1108/00035590710748605 

(2008 Outstanding paper Award by Emerald Literati Network)


[26]  Detection and identification of bacteria using antibiotic susceptibility and a multi-array electrochemical sensor with pattern recognition 

J. Karasinski, L. White, E. Wang, Y. Zhang, S. Andreescu, O.A. Sadik, B. Lavine, and M.N. Vora

Biosens. Bioelectron.,  22, 2007, 2643-2649

https://doi.org/10.1016/j.bios.2006.10.037

2006

[25] Twenty years research in cholinesterase biosensors: From basic research to practical applications 

S. Andreescu, and J.-L. Marty

     Biomol. Eng., 23(1), 2006, 1-15, (Invited review) 

https://doi.org/10.1016/j.bioeng.2006.01.001   


[24] Trends in Flow-Based Biosensing Systems for Pesticide Assessment  

B. Prieto-Simón, M. Campas, S. Andreescu, and J.-L. Marty

     Sensors, 6(10), 2006, 1161-1186

https://doi.org/10.3390/s6101161

    

[23]  Enzymatic biosensors for screening carbamate insecticides: application to environmental and food monitoring 

B. Bucur, M. Campas, B. Prieto-Simón, S. Andreescu, and J.-L. Marty

     Chemia i Inżynieria Ekologiczna, 13(5), 2006, 339-348 (Ecological Chemistry and Engineering)

www.infona.pl/resource/bwmeta1.element.baztech-article-BPG4-0014-0001

2005

[22]  Advanced electrochemical sensors for cell cancer monitoring

S. Andreescu, and O.A. Sadik

     Methods,  37, 2005, 84-93

https://doi.org/10.1016/j.ymeth.2005.05.007


[21]  Multiarray Sensors with Pattern Recognition for the Detection, Classification and Differentiation of Bacteria at Species and Subspecies Levels 

J. Karasinski, S. Andreescu, O.A. Sadik, B. Lavine, and M.N. Vora

     Anal. Chem., 77(24), 2005, 9741-7949 

https://doi.org/10.1021/ac0512150


[20]  Effect of natural and synthetic estrogens on A549 lung cancer cells: Correlation of cytotoxic effects to chemical structures 

S. Andreescu, O.A. Sadik, and D.W. McGee

     Chem. Res. Toxicol.  18, 2005, 446-474

https://doi.org/10.1021/tx0497393

2004

[19]  Application of oriented immobilisation methods to enzyme sensors. (A review) 

  M. Campas, B. Bucur, S. Andreescu, and J.-L. Marty

     Current Topics in Biotechnology,  1, 2004, 95-107

www.researchtrends.net/tia/abstract.asp?in=0&vn=1&tid=48&aid=1826&pub=2004&type=3 


[18]  Autonomous multielectrode system for monitoring the interactions of isoflavonoids with lung cancer cells 

  S. Andreescu, O.A. Sadik, D.W. McGee and S. Suye

     Anal. Chem., 76, 2004, 2321-2330 

https://doi.org/10.1021/ac035436m


[17]   The correlation of analyte structures with biosensor responses using structure-activity relationship: Detection of phenolic estrogens as model 

  S. Andreescu, and O.A. Sadik

     Anal. Chem. 76, 2004, 552-560 

  https://doi.org/10.1021/ac034480z 


[16]  Advances in Analytical Technologies for Environmental Protection and Public Safety. (Critical review)

  O.A. Sadik, A.K. Wanekaya, and S. Andreescu

     J. Environ. Monit., 6, 2004, 413-522 

https://doi.org/10.1039/B401794N


[15]   Trends & Challenges in Biochemical Sensors for Clinical and Environmental Monitoring. (A review)

  S. Andreescu, and O.A. Sadik

     Pure Appl. Chem. 76(4), 2004, 861-878 

  https://doi.org/10.1351/pac200476040861 


[14]   Affinity methods to immobilize acetylcholinesterases for manufacturing biosensors 

  B. Bucur, S. Andreescu, and J.-L. Marty

     Anal. Lett., 37(8), 2004, 1571-1588 

https://doi.org/10.1081/AL-120037588


[13]   Comparative investigation between acetylcholinesterase obtained from commercial sources and genetically modified Drosophila melanogaster. Application in amperometric biosensors for methamidophos pesticide detection 

  P.R.B.O. Marques, G.S. Nunes, S. Andreescu, and J.-L. Marty

     Biosens. Bioelectron., 20, 2004, 824-831 

  https://doi.org/10.1016/j.bios.2004.03.021

2003

[12]   A new electrocatalytic mechanism for the oxidation of phenols at platinum electrodes 

  S. Andreescu, D. Andreescu, and O.A. Sadik

     Electrochem. Commun., 5(8), 2003, 681-688 

  https://doi.org/10.1016/S1388-2481(03)00166-8


[11]   Development of highly sensitive sensor based on bio-engineered acetylcholinesterase immobilized by affinity method 

  S. Andreescu, D. Fournier, and J.-L. Marty

     Anal. Lett., 39(9), 2003, 1865-1885 

  https://doi.org/10.1081/AL-120023619


[10]   Screen-printed sensors with electropolymerised Meldola Blue as versatile detectors in biosensors

  A. Vasilescu, S. Andreescu, C. Bala, S.C. Litescu, T. Noguer, and J.-L. Marty

     Biosens. Bioelectron., 18, 2003, 781-790 

  https://doi.org/10.1016/S0956-5663(03)00044-7


[9] Strategies for developing NADH detectors based on meldola blue and screen-printed electrodes: a comparative study 

A. Vasilescu, T. Noguer, S. Andreescu, C. Calas-Blanchard, C. Bala and J.-L. Marty

  Talanta, 59, 2003, 751-756 

https://doi.org/10.1016/S0039-9140(02)00614-8


[8] Adsorption: an easy and efficient immobilisation of acetylcholinesterase on screen-printed electrodes 

C. Bonnet, S. Andreescu, and J.-L. Marty

  Anal. Chim. Acta, 481, 2003, 209-211 

https://doi.org/10.1016/S0003-2670(03)00122-3 

2002

[7] Immobilisation of AChE on screen-printed electrodes; Comparative study between three immobilisation methods; Applications to the detection of

organophosphorus insecticides 

S. Andreescu, L. Barthelmebs, and J.-L. Marty

  Anal. Chim. Acta, 464, 2002, 171-180 

https://doi.org/10.1016/S0003-2670(02)00518-4  


[6] Screen-printed electrode based on AChE for the detection of pesticides in presence of organic solvents 

S. Andreescu, T. Noguer, V. Magearu, and J.-L. Marty

  Talanta, 57, 2002, 169-176 

https://doi.org/10.1016/S0039-9140(02)00017-6  


[5] Detection of organophosphorus insecticides with immobilized acetylcholinesterase: Comparative study between two enzyme sensors 

S. Andreescu, A. Avramescu, C. Bala, V. Magearu, and J.-L. Marty

  Anal. Bioanal. Chem. 374, 2002, 39-45 

https://doi.org/10.1007/s00216-002-1442-4  


[4] Biosensors designed for environmental and food quality control based on screen-printed graphite electrodes with different configurations 

A. Avramescu, S. Andreescu, T. Noguer, C. Bala, D. Andreescu, and J.-L. Marty

  Anal. Bioanal. Chem. 374, 2002, 25-32 

https://doi.org/10.1007/s00216-002-1312-0 

2001

[3] Immobilization of enzymes on screen-printed sensors via an histidine tail. Application to the detection of pesticides using modified cholinesterase 

S. Andreescu, V. Magearu, A. Lougarre, D. Fournier, and J.-L. Marty

  Anal. Lett., 34 (4), 2001, 429-540 

https://doi.org/10.1081/AL-100002593


[2] The potential of screen printed electrodes for the development of biosensors – applications in environmental and food industry 

A. Avramescu, S. Andreescu, C. Bala, V. Magearu, and J.-L. Marty

  U.P.B. Sci. Bull. Series D, 63 (1), 2001, 318-328 


[1] Development of screen-printed sensors for phenol and their application in ambient air samples

D. Andreescu, S. Andreescu, C. Bala, A.F. Danet, and J.-L. Marty

  U.P.B. Sci. Bull. Series D, 63 (1), 2001, 309-316